Université Gustave Eiffel

Field of study Sciences and engineering

Training available in

Apprenticeship		Initial training	
Continuing education	Recognition of prior learning		3

How to apply :

https://www.univ-gustave-eiffel.fr/en/formation/applications-andenrolment/applications

Course venue :

Campus Marne la Vallée - Champs sur Marne - Bâtiment Copernic 5 Boulevard Descartes 77420 Champs-sur-Marne

Calendar :

Classes take place between mid-September and end of February. Work placements are from March, for a duration of four to six months.

Contacts :

RICHALOT-TAISNE Elodie (M1-M2)

MOSTARSHEDI Shermila (M2) Academic coordinator

SPAENS Julia (M1-M2) Academic secretary Julia.Spaens@univ-eiffel.fr Phone number : 01 60 95 72 04 Building : Copernic Office : 2B179

SOLTANI Amel Gestionnaire VAE vae@univ-eiffel.fr

More information :

For further details : https://www.univ-gustave-eiffel.fr/international/etudiantsinternationaux Service Information, Orientation et Insertion Professionnelle (SIO-IP) :

sio@univ-eiffel.fr / Tel : +33 1 60 95 76 76

Master's degree Electronics, electrical energy and automation Communicating systems in complex environments

Institut d'électronique et d'informatique Gaspard Monge (IGM)

Master's degree M2

TO GET THERE

This M2 programme is open to:

1- students from Université Gustave Eiffel who have passed M1 in Electronics, Electrical Energy and Automation

2- students from another French university who have passed M1 in Electronics, Electrical Energy and Automation or equivalent

3- foreign students with a degree equivalent to the Master's in Electronics, Electrical Energy and Automation

4- students from co-accredited institutions studying a double-degree in the final year of their program

ACQUIRED SKILLS

The course provides skills related to design techniques at different levels (systems, subsystems, circuits and components) in the following areas:

- Theoretical: RF, microwave and optical communications

- Methodological: computational electromagnetics and microwave and optical circuit modelling and design tools for propagation channels

- Practical: measurement and characterisation of microwave and optical devices

YOUR FUTURE CAREER

Graduates of this program have two options:

- Pursuing further PhD studies, then employment as a researcher, faculty member or engineer

- Direct employment as a research engineer, integration engineer, test and validation engineer, or research and development engineer

BENEFITS OF THE PROGRAM

The course provides skills related to design techniques at different levels (systems, subsystems, circuits and components) in the following areas: - Theoretical: RF, microwave and optical communications - Methodological: computational electromagnetics and microwave and optical circuit modelling and design tools for propagation channels - Practical: measurement and characterisation of microwave and optical devices

More information

PROGRAM

SEMESTER 3

Analyse de Cycle de Vie Radio access networks (ECTS:3) Advanced electromagnetics (ECTS:3) RF circuits and systems (ECTS:3) Optoelectronics (ECTS:3) Antennas (ECTS:3) Microwave and millimeter integrated circuits (ECTS:3) Techniques de mesures hyperfréquences (ECTS:3) Radio access systems for cellular networks (ECTS:3) Radio transmitter architectures and companion processing (ECTS:3) Radio wave propagation (ECTS:3) Computational electromagnetics (ECTS:3) Statistical methods applied to electromagnetics (ECTS:3) Energy harvesting for Internet of Things (ECTS:3) MEMS micro-sensors (ECTS:3) Optical link for very high throughput (ECTS:3) Next-generation optical transmission systems (ECTS:3)

SEMESTER 4

Internship (ECTS:30)