MASTER (EN) MATHEMATICS
AND APPLICATIONS
ANALYSIS AND
APPLICATIONS

ENTRY REQUIREMENTS
The M1 (1st year) is for students who have a Degree in Mathematics or Mathematics-Computer Science.

The M2 (2nd year) is for students who have successfully completed a first year of a Master's in Pure or Applied Mathematics or in Mathematics-Computer Science or who can prove they have an equivalent level, as well as Grandes Ecoles students.

Applications are examined by a commission.

ACQUIRED SKILLS
At the end of this Master's, graduates are able to:
- Master mathematical tools, irrespective of whether they are differential, probability or statistics-based, as well as digital and adapt to their development and ever-increasing complexity.
- Conceptualize and implement theoretical knowledge to address real, tangible issues, based on students' fields of expertise, as precisely as possible.
- Model random events.
- Recommend harmonious solutions.
- Undertake research and use documentary resources optimally to take on new subjects and to be able to

YOUR FUTURE CAREER
The "Mathematics and Applications" Master's trains high-level mathematicians who wish to go into teaching or academic or industrial research or market finance positions. Financial market modelling calls on the use of sophisticated mathematical tools.

BENEFITS OF THE PROGRAM
Supported by very high level research laboratories (LAMA, CERMICS, LIGM) and the Bézout Labex.

Attractiveness, legibility and opportunities for the three specializations Partnership with ENPC

The training offer's regional coherence (East Paris). Work-study training and contributions from professional partners.
<table>
<thead>
<tr>
<th>SEMESTER 3</th>
<th>SEMESTER 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profiles and analysis of non-linear evolution equations</td>
<td>Internship</td>
</tr>
<tr>
<td>Analysis tools and partial differential equations</td>
<td>2 Units to be validated</td>
</tr>
<tr>
<td>Discrete curvature and 3D image synthesis</td>
<td>Multifractal analysis and signal and image processing</td>
</tr>
<tr>
<td>Gradient discretisation methods for stochastic modelling and financial</td>
<td>Nonlinear dispersive equations</td>
</tr>
<tr>
<td>applications</td>
<td>Discrete systolic geometry and algorithms</td>
</tr>
<tr>
<td></td>
<td>Fourier analysis methods for the study of non-homogeneous fluids</td>
</tr>
</tbody>
</table>