Bachelor Mathematics

Mathématiques option accès santé (L.AS)
Entry requirements
Public visé : bacheliers. Compétences attendues : Les spécialités du Baccaluréat requises sont Mathématiques et Sciences de la Vie et de la Terre (éventuellement Physique-Chimie). L'option Mathématiques Expertes est vivement conseillée.
Benefits of the program
Ce cursus offre un accès aux filières médicales tout en permettant de suivre une Licence de Mathématiques. Au cours de la licence, il est possible de présenter deux fois sa candidature aux filières médicales. L’admission nécessite tout d’abord la validation de l’année de licence en cours, en particulier du module de Santé. Une sélection est ensuite effectuée entre les candidats des différentes LAS en s’appuyant sur la moyenne de l’année de licence en cours et éventuellement des épreuves orales. Les enseignements de Santé sont assurés par l'Université de Créteil et dispensés en ligne. Le reste des enseignements a lieu en présence sur le campus de l'Université Gustave Eiffel.
Acquired skills
Acquisition d'une solide formation scientifique en Mathématiques et en Sciences pour la Santé. Capacité à mettre en œuvre une démarche scientifique. Savoir présenter, oralement et par écrit, un projet. En Mathématiques : maîtriser les concepts fondamentaux de l'analyse, de l'algèbre, des probabilités et des statistiques. En Sciences pour la Santé : maîtriser les concepts fondamentaux permettant d’intégrer la seconde année des filières médicales.
Registration details
Parcoursup uniquement
Course venue
Your future career
Accès (soumis à sélection) en deuxième année de filière médicale (Médecine, Maïeutique, Odontologie, Pharmacie) à l’Université Paris-Est Créteil. Poursuite en Licence de Mathématiques, puis en Master de Mathématiques (Métiers de l’Enseignement, Actuariat, Analyse, Probabilités et Statistiques, Finance, etc.)
Major thematics of study
Mathématiques et Sciences pour la Santé
Study organization
Une prérentrée de prise en main des outils informatiques est organisée en L1. Des cours de soutien en Mathématiques et Informatique sont dispensés en ligne tout au long de la L1.
Options
Pas d’options.
Partenariats :
Université Gustave Eiffel – Université Paris-Est Créteil
SEMESTRE 1
Courses | ECTS | CM | TD | TP |
---|---|---|---|---|
ANGLAIS | ||||
English 1 The teaching of English during the bachelor's degree aims to improve written and oral skills so that students become more autonomous. The aim is to be able to understand and communicate in future professional exchanges, as well as to be able to understand the scientific articles that they may encounter during their studies and/or professional lives. Throughout the bachelor's degree, English courses focus on providing an opening to different cultures in order to encourage exchanges between countries. Level groups are set up during the first semester to enable everyone to approach English courses in the best possible conditions. The emphasis is on oral participation thanks to a quality policy of the UFR which organises English courses in half groups. Langue de l'enseignementANGLAIS / ENGLISH | 3 | 15h | ||
SANTE | ||||
UE1- La Cellule | 3 | |||
UE2 | 3 | |||
De l'Atome aux Médicaments | 1 | |||
Les Tissus et le Sang | 1 | |||
Reproduction et Développement | 1 | |||
ANALYSE | ||||
Differential and Integral Calculs The objective of this EU is to deepen the concepts of analysis seen at the science terminal and to improve the computational skills of students. Complex numbers, derivability, primitive calculation, study of usual reciprocal functions, polynomials, as well as first and second order ordinary differential equations, linear and with constant coefficients are discussed. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 24h | 36h | |
ALGEBRE | ||||
Methodology The learning outcomes of the "méthodologie des mathématiques" course are designed to acquire the mathematical method based on the unambiguous definition of notions, the formulation of conjectures, the formulation of mathematical propositions and their demonstration using logic from more basic propositions, going back to the axioms. To do this, learning and mastering the language of mathematics is fundamental (speech, syntax, objects, variables). This course aims to allow the acquisition of the basic elements of this language by its implementation in simple demonstrations addressing basic but new concepts that will be seen in class. Topics include naïve set theory, applications, binary relations, natural integers and groups. At the end of this course the students will be able to independently demonstrate simple original propositions concerning these notions. This course is built around three modalities: the lecture, the tutorials, and the personal work. These revolve around the elements transmitted in class and in Tds but also with the help of other educational resources, including self-correcting exercises. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 24h | 36h | |
INFORMATIQUE | ||||
Les éléments ci-dessous sont à choix : | ||||
ALGORITHMS AND PROGRAMMING 1 This module is the very first computer science course of the degree and is intended for students who do not necessarily have experience in computer science. Its main objective is to introduce the fundamental bases of imperative programming (values, types, variables, conditionals, loops), as well as the basics of algorithmics (list manipulation, strings). The support language is Python. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 36h | 18h | 18h |
PROBLEM BASED LEARNING 1 This module is intended for students who already have some experience of computer science in general, and in Python programming in particular (especially students who have followed the NSI speciality in ``première'' or ``terminale'' in high school). It emphasizes accompanied problem solving, and requires autonomy, curiosity and perseverance for students. The module is divided into four or five sequences, each of which consists of the presentation of a problem, its resolution by the students and the presentation of the work done in the form of a short document, generally accompanied by a Python program. This course shares the main learning objectives of Algorithms and Programming 1 (AP1): basic concepts of imperative programming and the Python language, elementary algorithms (especially list traversal), creation of readable and structured programs. The theoretical part of the course will be based on a common evaluation with the one of AP1. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 36h | 36h | |
--- Fin de liste à choix --- | ||||
REMEDIATION 1 | 6h | 6h |
SEMESTRE 2
Courses | ECTS | CM | TD | TP |
---|---|---|---|---|
ANGLAIS | ||||
English 2 The teaching of English during the bachelor's degree aims to improve written and oral skills so that students become more autonomous. The aim is to be able to understand and communicate in future professional exchanges, as well as to be able to understand the scientific articles that they may encounter during their studies and/or professional lives. Throughout the bachelor's degree, English courses focus on providing an opening to different cultures in order to encourage exchanges between countries. Level groups are set up during the first semester to enable everyone to approach English courses in the best possible conditions. The emphasis is on oral participation thanks to a quality policy of the UFR which organises English courses in half groups. Langue de l'enseignementANGLAIS / ENGLISH | 3 | 15h | ||
SANTE | ||||
UE3 | 3 | |||
Système cardio-respiratoire | 1 | |||
Métabolisme et Digestion | 1 | |||
Squelette et Motricité | 1 | |||
UE4 | 3 | |||
Ethique Médicale | 1 | |||
Organisation du Système de Santé | 1 | |||
Epistémologie de la Médecine et de la Santé | 0.5 | |||
Psychologie, Santé et Cognition | 0.5 | |||
ANALYSE | ||||
Real Sequences and Functions Content: 1) Real numbers (upper and lower bound, absolute value, integer part, axiomatic of R, intervals, density of rational and irrational numbers)2) Real sequences: monotonicity, convergence (with epsilon), inductive and adjacent sequences, Cauchy sequences, Bolzano-Weierstrass theorem, arithmetic and geometric sequences. 3) Real functions (limit with Epsilon, delta), continuity, image of a compact and non compact interval through a continuous function, uniform continuity, Heine's theorem, bijections, homeomorphisms, lipschitzian functions. 4) Derivation of real functions: definition, Rolle's theorem, Mean value theorem, local extrema, Taylor-Lagrange and Taylor-Young formula, limited developments and application to local extrema. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 24h | 36h | |
ALGEBRE | ||||
Algebra 1 The course of Linear Algebra consists of three chapters. The first chapter defines the vector spaces, the bases, and introduces the notion of dimension.Then we deal with linear applications: kernel, image, rank, projectors. The last chapter is about matrices: their links to linear applications, base change, and linear systems. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 24h | 36h | |
INFORMATIQUE | ||||
Les éléments ci-dessous sont à choix : | ||||
ALGORITHMS AND PROGRAMMING 2 This course is the continuation of Algorithms and Programming 1 (AP1) from the first semester. It builds on the notions previously introduced to study new and more advanced ones. In particular, the notions of recursive programming and complexity are covered. Some classical backtracking algorithms, searching, and sorting will also be introduced. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 36h | 18h | 18h |
PROBLEM BASED LEARNING 2 This module is intended for students who already have some experience with the specific algorithmic topics covered in Algorithms and Programming 2 (AP2). It may be of particular interest to students who have taken the NSI speciality in ``terminale'' in high school. Like the APP1 module, it emphasizes accompanied problem solving, and requires autonomy, curiosity and perseverance from the students. The module is divided into four or five sequences, each consisting of the presentation of a problem, its resolution by the student, and the presentation of the work done in the form of a short document, generally accompanied by a Python program. This teaching shares the main learning objectives of the AP2 module: recursion, complexity, searching and sorting algorithms, stacks, queues, implicit graph traversal. The theoretical part will be based on a common evaluation with the AP2 module. Langue de l'enseignementFRANÇAIS / FRENCH | 7 | 36h | 36h | |
--- Fin de liste à choix --- | ||||
REMEDIATION 2 | 6h | 6h |
FRANCIS RIBAUD (L1)
Academic coordinatorDOYEN David (L2)
Academic coordinatorChristine BIAS (L1-L2)
Academic secretaryBachelor Mathematics
L2-L3
Summary
- Degree
- Bachelor
- Field(s)
- Sciences, technologies, santé
- Thematics of study
- Mathematics
- How to apply
- Initial Education
- Course venue
- Departments and Institutes
- UFR Mathématiques
Une formation de