Master Electronics, Electrical Energy and Automation

Systèmes Communicants en Environnement Complexe
Entry requirements
The M2 SCEC program is open to:
1- students of the University Gustave Eiffel having validated the 1st year of the master 3EA
2- students from outside the University Gustave Eiffel who have validated a 1st year of the master 3EA or equivalent
3- foreign students with a degree equivalent to the master 3EA
4- students from co-accredited institutions for a double-degree during the last year of their program
Benefits of the program
- Dual-skill program in the RF and optical domains
- Practical teaching combining cutting-edge instruments and high-performance software used in industry and research (Lab sessions constitute more than 25% of teaching hours).
- Teachings provided by researchers in their field of research and expertise (4 co-habilitated institutions are involved).
- Possibility to customise the program wih a selection of options tailored to the professional project of each student (6 options are selected among 12).
Acquired skills
The skills related to design techniques at different levels (systems, subsystems, circuits and components) are as follows:
- Theoretical: fields of RF, microwave and optical communications
- Methodological: computational tools for electromagnetics and propagation channels, microwave and optical circuits modelling and design tools
- Practical: measurement and characterisation of microwave and optical devices
Registration details
Pour les candidats en France, les dossiers de candidature sont à déposer sur l'application de candidature eCandidat de l'Université Gustave Eiffel.
Pour les candidats résidant à l'étranger, les dossiers de candidature sont à déposer via Etudes en France de Campus France pour l'Université Gustave Eiffel.
Course venue
Schedule of studies
Courses take place between mid-September and end-February.
Internship takes place from March for a duration of 4 to 6 months.
Your future career
Two options are offered to the graduates of this program:
- Pursuit of PhD studies and employment as a researcher, teacher-researcher or engineer-doctor
- Direct employment as a research engineer, integration engineer, test and validation engineer, or research and development engineer
The business segments are: aerospace, automotive, transportation, high-frequency electronics, integrated circuits, telecommunications, mobile telephony, broadband and high throughput networks, metrology and electromagnetic measurements.
Professional integration
Two options are offered to the graduates of this program:
- Pursuit of PhD studies and employment as a researcher, teacher-researcher or engineer-doctor
- Direct employment as a research engineer, integration engineer, test and validation engineer, or research and development engineer
The business segments are: aerospace, automotive, transportation, high-frequency electronics, integrated circuits, telecommunications, mobile telephony, broadband and high throughput networks, metrology and electromagnetic measurements.
Study objectives
The aim of the SCEC program is to train students in the design of communicating systems deployed in complex and uncontrolled environments in the frequency ranges from RF to optics. This specialty has a dual focus, employment in research domain and employment in industry, however the research orientation is more important.
The targeted skills are related to design techniques at different levels: systems, subsystems, circuits and components in both microwave and optical bands. In addition to the skills acquired in the obligatory units, students will have the opportunity to personalise their program through a choice of optional units which correspond to their objectives and to develop a set of specific skills.
+D4
The aspects covered by the obligatory units concern:
- study of the design techniques of the radio access networks,
- learning theoretical concepts for the modelling of electromagnetic phenomena,
- design of the passive and active elements of a radiofrequency transmission / reception architectures,
- study and design of optoelectronic systems.
At the end of the program, the graduate student has the following achievements:
- Theoretical in the fields of RF, microwave and optical communications,
- Methodological on the one hand through the numerical modelling tools for electromagnetics and propagation channels and on the other hand with modelling and design tools for microwave and optical circuits,
- Practical by measurement and characterisation of microwave and optical devices.
Major thematics of study
Digital communication, signal processing, microwave systems, circuit design, electromagnetics, radio wave propagation, antennas, optoelectronics, modelling techniques and computational electromagnetics, applied mathematics
Study organization
Le parcours M2 SCEC est ouvert en formation initiale, formation continue ou apprentissage.
Le cursus de 2e année débute par une période d'enseignements théoriques et pratiques entre mi-septembre et fin février. L'enseignement des unités obligatoires a lieu avant mi-novembre et est suivi par l'enseignement des unités d'option. Les enseignements ont lieu majoritairement à l'Université Gustave Eiffel mais aussi dans d'autres établissements co-habilités (CNAM et TSP). Le stage obligatoire d'une durée de 4 à 6 mois se déroule à partir du mois de mars.
Modalité d'admission en FC :
La procédure est la même qu'en FI.
Modalité d'admission en FI :
1- Pour les étudiants de l'université Gustave Eiffel : Les vœux sont examinés lors du jury de Master 1 par les responsables de première année et de parcours et le choix est finalisé par un examen du dossier de chaque étudiant en tenant compte de ses vœux ainsi que de ses résultats dans les différentes matières.
2- Pour les étudiants extérieurs à l'université Gustave Eiffel : L'examen des dossiers et la sélection des candidats sont effectués par le responsable du parcours SCEC ou par le responsable du parcours au CNAM, établissement co-habilité.
3- Pour les candidats résidants à l'étranger : L'examen des dossiers et la sélection des candidats sont effectués par le responsable du parcours SCEC.
4- Pour les élèves ingénieurs : L'examen des dossiers et l'aménagement du parcours sont effectués par le responsable du parcours SCEC et son interlocuteur dans les établissements co-habilités : ESIEE ou TSP.
Options
Students must choose 4 optional units from 10 proposed units in order to personalise their program and thus develop a set of specific skills:
- Radio access systems for cellular networks
- Radio transmitter architectures and companion processing
- Microwave and millimeter integrated circuits
- Optical links for very high throughput
- MEMS micro-sensors
- Computational electromagnetics
- Statistical methods applied to electromagnetics
- Radio wave propagation
- Energy harvesting for Internet of Things
- Next-generation optical transmission systems
International
Some courses of the M2 SCEC program are in common with ESIEE Paris courses to which international students, especially those in the ERASMUS program, attend.These courses are taught in English.
M2 SCEC students have the opportunity to do their internship abroad with the help of the university's International Relations Department.
Major thematics of Research
This program relies solidly on the skills and expertise of the ESYCOM laboratory, a multi-unit research laboratory that brings together researchers from université Gustave Eiffel and the CNAM. These are also 3 institutions that are part of the co-accreditation of this master's degree. The courses are mostly taught by ESYCOM laboratory researchers according to their expertise and their field of research. The future PhD students of the laboratory are selected in part from the graduates of this program having obtained excellent academic results.
Partenariats :
Télécom Paris
Co-accréditation :
Université Gustave Eiffel - Le CNAM
Semestre 3
Courses | ECTS | CM | TD | TP |
---|---|---|---|---|
Internship During 4 to 6 months Langue de l'enseignementFRANÇAIS / FRENCH Compétences et connaissances visées de l'enseignementObjectif : Ce cours porte sur les techniques de mesure impliquées dans la caractérisation de composants, dispositifs, circuits et systèmes dans les différents domaines des hyperfréquences : couvrant les fréquences radio et micro-ondes et allant au niveau du système et de la communication numérique. L’objectif est de donner aux étudiants une connaissance à la fois théorique et pratique de ces techniques de mesures et de parfaire leur autonomie lors de l’utilisation des appareils de mesure de pointe. Contenu : introduction des appareils de mesure dans le domaine des hyperfréquences (e.g. analyseur de spectre, analyseur de réseau vectoriel), études de différentes techniques de calibration (e.g. TRL, SOLT), TP de mesures d’un amplificateur faible bruit, TP de mesures d’un amplificateur de puissance, TP de mesures sur la transposition de fréquences et la PLL RF, TP de mesures sur la technologie RFID. | 30 | 6h | 6h | 6h |
Microwave and millimeter integrated circuits Objective: provide the basis of the design of analog integrated circuits used in very high throughput digital data transmission / reception systems, present the technologies of components in microwave and millimetric bands as well as the types of active components (MESFET, HEMT , PHEMT, MHEMT, DHBT, HBT, BJT, Schottky diode), address the applications and the ultra high-speed data transmission systems, evolve towards THz. Content: High-frequency digital data integrated circuit technologies, passive / active microwave and millimeter components (narrowband, broadband, low noise, power amplifiers, oscillators, mixers, multipliers), MMIC technologies, CAD for high frequencies circuits and optoelectronics, simulation of a very broadband amplifier in the linear and nonlinear domains with ADS as well as the characterisation of nonlinearities of a real amplifier to the spectrum analyser. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 18h | 12h | |
Radio access networks Objective: This unit aims to address, from a "system" point of view, the design of a radio access network. The backbone of the course is the establishment of the link budget of a transmission and the capacity, in terms of the number of users, that a radio access system can offer. The course illustrates different concepts through 30 years of evolution (1990-2020) of radio access standards (2G, 3G, 4G, 5G). The basic elements of signal processing and the main principles of digital modulations are recalled. The different radio access modes are analysed. Content: Free space link budget, link budget with losses, radio channel capacity, Erlang laws, digital modulation, TDMA, CDMA and OFDMA access, OFDM multiplexing, protection against multipath interferences, antenna processing, beamforming and MIMO. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 21h | 3h | |
Antennas Objective: The objective of this course is to train students in antenna design techniques. Theoretical and applicative characteristics of antennas in the fields of telecommunications, the Internet of Things, remote sensing and localisation are studied using simple or advanced concepts and taking into account the engineering and research aspects. Content: general antenna properties (impedance and radiation pattern), wired antennas, aperture antennas, printed antennas, directional antennas, miniature antennas, antenna array, multi-antenna system, power supply circuits, projects using NEC / HFSS for design, realisation and measurements of miniature antennas. Langue de l'enseignementANGLAIS / ENGLISH Compétences et connaissances visées de l'enseignementObjectif : L'objectif de ce cours est de former les étudiants aux techniques de conception d'antennes. Les caractéristiques théoriques et applicatives des antennes dans les domaines de télécommunications, l'internet des objets, la télédétection et la localisation sont étudiées à l'aide de concepts simples ou avancés et en prenant en compte les aspects ingénierie et recherche. | 3 | 20h | 16h | |
Advanced electromagnetics Objective: demonstrate the need for electromagnetic studies in the design of devices constituting a high-frequency communication system, obtain a solid theoretical knowledge and acquire the practical expertise for the electromagnetic modelling of a system, highlight the aspects of free and guided propagation, understand the problem of radiation and the principle of antennas' operation. Content: vector operators, Maxwell equations, plane waves, evanescent waves, polarisation, propagation in a heterogeneous medium, ray approximation, Hertz potentials, Green's theorem, radiation, equivalence principles. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 27h | 6h | |
Optoelectronics Objective: This module is a first introduction to the problems encountered during the transmission of telecommunication signals on optical fiber for the proper design of an optical link. Content: general architecture of optical networks, WDM links, guided wave phenomena, impact of linear effects during propagation, establishment of a link budget, light-matter interaction mechanisms and associated evolution equations, physics of EDFA amplifiers and the main end components (DBR, DFB, Fabry-Pérot laser sources and PIN or avalanche photodiodes), calculations of the different contributions to the noise in a link (optical sources side and reception side) and calculation of the SNR at the end of the link, origin of the fundamental reasons limiting the capacity of a link. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 27h | 9h | |
Les éléments ci-dessous sont à choix : | ||||
Radio access systems for cellular networks Objective: This unit aims to present the evolution of cellular communication networks, in particular on the radio access part. The implementation of the basic principles of current and new radio functions, from signal processing and digital communications (OFDM, OFDMA, MIMO, digital modulations, channel protection), in the 4G and 5G radio interfaces will be studied. This course also focuses on new concepts, such as interference management, carrier aggregation, massive MIMO or non-orthogonal approaches (NOMA). Content: cellular deployment, frequency reuse, frequency planning, radio coverage calculation and system capacity, SISO and MIMO (standard) radio-mobile channel modelling, description of physical layers, interference management mechanisms, new functionalities of 4G radio technologies (LTE, LTEadv), the new 5G radio (NR). Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 18h | 3h | |
Radio transmitter architectures and companion processing Objective: This unit presents different aspects of the architecture of wireless transceivers. It analyses the interactions between the baseband part and the RF part of a transceiver. It exposes the choices and possible compromises for the optimisation of a global architecture according to the system constraints and the sensitivities of the modulations used compared to the imperfections of the architectures. It ends with an introduction to software radio. Content: Characteristics of waveforms used in radio communication systems and crest factor reduction techniques, quantification of transceiver imperfections, LAB with USRP software radio cards on a basic digital communication link, transmitter linearisation techniques, evolution towards software radio, study of the influence of the RF segment as a function of the type of digital modulation. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 11h | 2h | 8h |
Microwave and millimeter integrated circuits Objective: provide the basis of the design of analog integrated circuits used in very high throughput digital data transmission / reception systems, present the technologies of components in microwave and millimetric bands as well as the types of active components (MESFET, HEMT , PHEMT, MHEMT, DHBT, HBT, BJT, Schottky diode), address the applications and the ultra high-speed data transmission systems, evolve towards THz. Content: High-frequency digital data integrated circuit technologies, passive / active microwave and millimeter components (narrowband, broadband, low noise, power amplifiers, oscillators, mixers, multipliers), MMIC technologies, CAD for high frequencies circuits and optoelectronics, simulation of a very broadband amplifier in the linear and nonlinear domains with ADS as well as the characterisation of nonlinearities of a real amplifier to the spectrum analyser. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 18h | 12h | |
Optical link for very high throughput Objective: provide the basis of optical link design for very high throughput, characterisation of the key components of the link (laser source, photodetector, modulator, optical fiber), knowledge of the architectures (direct modulation / direct detection, phase modulation / coherent detection) and their respective advantages, understand the impact of the sources of noise and nonlinearities of different components on the quality of an opto-microwave link. Content: characteristics of the various components, presentation of the different possible architectures, definition of the noise sources of the various components (RIN, optical phase noise, shot noise, dark noise, thermal noise, conversion of phase noise / intensity noise), simulation of the electrical gain and electrical noise factor of a very high throughput link for different parameters (optical losses, frequencies, laser polarisation current). Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 18h | 3h | |
MEMS micro-sensors I. Basic of MEMS fabrication : Reminder of MEMS fabrication, Tutorial on MEMS fabrication II. Inertial MEMS : MEMS accelerometer, Tutorial on MEMS accelerometer, Coventor lab on MEMS accelerometer, MEMS gyroscope, ANSYS tutorial on MEMS gyroscope III. Other MEMS applications : MEMS sensors for environment, MEMS sensors for healthcare, MEMS sensors for biology, MEMS sensors for energy, MEMS sensors for airborne particle contamination Langue de l'enseignementANGLAIS / ENGLISH | 3 | 17h | 7h | 6h |
Computational electromagnetics Objective: study the principles and properties of different computational techniques in electromagnetics, explain the functionality of electromagnetic simulators according to their computing method. Content: Finite Difference Time Domain method (FDTD), Transmission Line Matrix method (TLM), Finite Element Method (FEM), Method of Moments (MOM), asymptotic methods such as Geometrical Optics and Physical Optics (GO, PO), LAB sessions with Matlab (FDTD, MOM), LAB session with Ansoft Designer (FEM). Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 21h | 9h | |
Statistical methods applied to electromagnetics Objective: Uncertainty quantification is the end-to-end study of the impact of all forms of error and uncertainty in the models arising in the applications. During the last decade, this research area has gained importance at the interface of applied mathematics, statistics, computational science, and many applications in science and engineering. This course introduces the basic concepts of uncertainty quantification: probabilistic modelling of data, uncertainty propagation techniques and sensitivity analysis. Content: probabilistic modelling (introduction to copula theory), uncertainty propagation (Monte Carlo simulation and polynomial chaos expansions) and sensitivity analysis (correlation measures, Sobol' indices), practical work using Matlab and UQLab. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 15h | 9h | |
Radio wave propagation Objective: study the physical mechanisms of the propagation of radio waves, deepen the notions of wave propagation according to different contexts of the deployment of the communication systems, study the existing models and the associated parameters for radio channel modelling in different communication systems, establish the appropriate link budgets. Content: microwave radio, mobile radio, indoor channel, broadband communication, study of scientific articles and oral presentations. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 21h | 3h | |
Energy harvesting for Internet of Things Objective: Energy harvesting has recently become a solution for powering up autonomous sensors. This is a key point for the success of wireless sensor networks and the Internet of Things (IoT). The objective of this course is to present different techniques used for the production of electrical energy from the sensor environment. Special attention will be given to energy harvesting technologies from electromagnetic waves and from mechanical vibrations. Content: mechanical energy harvesting (electrostatic and piezoelectric transductions), triboelectric devices, wireless energy transfer: near-field systems (inductive coupling, resonant inductive coupling), wireless energy transfer: far-field systems (rectenna: components, RF-DC conversion mechanism, topologies and networks), design considerations, application to wireless communicating sensors power supply Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 18h | 8h | |
Next-generation optical transmission systems Objective: present recent technologies to increase the amount of information transmitted in the same optical fiber. Content: principles of intensity-modulated WDM optical links, coherent systems and complex modulation format, architecture of associated transmitters and receivers, polarisation multiplexing and spatial multiplexing techniques, linear and nonlinear effects of propagation, broadband amplification, optical transmission quality criteria and fundamental limitations, optical filtering for very high throughput transmission systems and applications to ROADM nodes of flexible optical networks, electro-optical modulation and its applications to the transport of information. Langue de l'enseignementFRANÇAIS / FRENCH | 3 | 18h | 3h | 3h |
Semestre 4
Courses | ECTS | CM | TD | TP |
---|---|---|---|---|
Internship During 4 to 6 months Langue de l'enseignementFRANÇAIS / FRENCH | 30 |
RICHALOT-TAISNE Elodie (M1-M2)
Coordinator of the degree programMOSTARSHEDI Shermila (M2)
Academic coordinatorSPAENS Julia (M1-M2)
Academic secretaryMaster (en) Electronics, Electrical Energy and Automation
M2Systèmes Communicants en Environnement Complexe
Summary
- Degree
- Master (en)
- Field(s)
- Sciences, technologies, santé
- Thematics of study
- Electronics, Electrical Energy and Automation
- How to apply
- Initial Education / Apprenticeship / Continuing Education / Recognition of prior learning
- Course venue
- Departments and Institutes
- Institut Gaspard Monge (IGM)
Une formation de
Partenaire(s)