Master Matériaux Avancés et Nanomatériaux (MAN)
Pour y accéder
Le Master est accessible au niveau M1 à des étudiants titulaires d'une licence de Sciences (Physique, Chimie) ou provenant de certaines écoles d'ingénieurs. Le recrutement des étudiants se fait sur dossier. Les étudiants qui ont validé M1 peuvent accéder au M2 Matériaux Avancés et Nanomatériaux sans sélection. Les titulaires de M1 d'autres masters peuvent être accueillis en deuxième année dans l'une des spécialités du Master avec l'accord du comité pédagogique
Dans la même mention
Les plus de la formation
L'objectif de ce master est de fournir une base très solide de physique, chimie et mécanique des matériaux : de la structure, la propriété à l'application. Les enseignements dans le domaine des matériaux fonctionnels trouvent des applications dans divers secteurs très porteurs de l'industrie et de la recherche; ces enseignements s'inscrivent aussi dans une démarche de développement durable.
Compétences visées
Bases solides de Physique, Chimie et Mécanique des matériaux. Interaction Matière – Rayonnement. Méthodes de caractérisation électrochimiques, spectroscopiques et microscopiques. Développement des démarches d'expérimentation ou de modélisation pour améliorer les performances des matériaux ou pour trouver des solutions innovantes. Interprétation, validation et valorisation des résultats expérimentaux. Assurance d'une veille technologique sur les matériaux et leur domaine spécifique d'application. Connaissance de l'entreprise et communication auprès d'experts et d'utilisateurs.
Internationalisation de la formation
Les étudiants peuvent effectuer un semestre à l’étranger dans le cadre du réseau Erasmus Mundus ou effectuer leur stage de Master 2 à l’étranger.
Modalités d'accès
Candidature en ligne via l’application e-candidat, ouverte mi- avril, sur le site internet de l’université Gustave Eiffel.
Procédure spécifique pour les étudiants internationaux (Hors UE et Suisse), titulaires de diplômes étrangers, résidant dans un pays concerné par la procédure Études en France (voir liste des pays sur le site Campus France).
Lien des modalités de candidature
Lieu(x) de la formation
Campus Marne la Vallée - Champs sur Marne
Bâtiment Lavoisier
Après la formation
Les titulaires du M1 SGM peuvent être accueillis dans l'une des spécialités proposées du Master (à noter que la spécialité SMCD est sélective), et peuvent postuler aux autres Master 2 similaires afin d'atteindre l'objectif soit recherche, permettant d’entreprendre une thèse ; soit professionnel avec des débouchés en entreprise.
Insertion professionnelle
La formation complète (M1-SGM + M2-MAN) prépare aux métiers de la recherche et du développement dans des laboratoires de recherche ou dans l’industrie dans des secteurs d’activité tels que l’aéronautique, l’automobile, le stockage et la conversion d’énergie, la production ou le recyclage de métaux/matériaux, le stockage de déchets ménagers ou industriels, la production de ciment. Une prolongation du master par une thèse est aussi possible.
Objectifs de la formation
- Donner une formation de base de physique, chimie et mécanique des matériaux.
- Fournir les bases nécessaires à une approche multidisciplinaire du comportement des matériaux, de leur élaboration et caractérisations.
- Fournir les compétences pour maîtriser la relation entre la structure, la nanostructure, et les propriétés physiques et chimiques des systèmes étudiés.
- Apprendre les concepts pour établir le lien entre les propriétés microscopiques et les propriétés macroscopiques des grandeurs physiques.
Disciplines majeures
Physique, Chimie, Matériaux
Organisation de la formation
Réunion de pré-rentrée une semaine avant la date de rentrée. Le mini-projet (semestre 1) et le projet Biblio-anglais (semestre 2) sont encadrés par les tuteurs bien identifiés avec un suivi personnalisé.
Modalités d'admission en FI :
Les candidats en M1 doivent être titulaires d'une licence ou équivalent. Les candidats doivent déposer un dossier qui sera étudié par la commission d'admission. Cette dernière déclare le candidat admis ou refusé dans la formation concernée.
Modalités d'admission en FC :
M1 SGM est ouvert aux étudiants de la formation continue. Pour plus d'informations, contacter le Service formation continue et de la Validation des Acquis de l'expérience.
Modalités d'admission en FA :
Non proposé
Calendrier
Semestre 1 : septembre-Janvier / Semestre 2: Février-Juin.
Pas de stage en M1.
Les options
Les 5 UEs optionnelles proposées aux étudiants leur permettent de s'orienter vers un domaine relié à la Physique ou la Chimie ou la Mécanique des Matériaux, selon leur formation initiale et selon leur projet professionnel.
Environnement de recherche
Appui sur des laboratoires situés sur le secteur du PRES Paris-Est, à forte visibilité au niveau national et international.
Les laboratoires de recherche concernés :
- ICMPE (Institut de Chimie et des Matériaux Paris-Est) UMR 7182, CNRS-UPEC
- ESYCOM, CNRS FRE2028, UPEM-ESIEE Paris
- PLMC (Physique des Liquides et Milieux Complexes) UPEC - EA 3954
- LGE (Laboratoire Géomatériaux et Environnement) UPEM - EA 4508
- Laboratoire Navier : Unité mixte de Recherche ENPC / LCPC & CNRS
- Département (MAST) Matériaux et Structures de IFSTTAR
- Département GERS (Géotechnique, Environnement, Risques naturels et Sciences de la terre) de l’IFSTTAR
(IFSTTAR : Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux)
- Institut de Recherche en Constructibilité de l'ESTP
(ESTP : École Spéciale des Travaux Publics)
Tarif FC (Les informations ci-contre s'adressent uniquement aux adultes en reprise d'études)
7000 €/an
Semestre 3
Enseignements | ECTS | CM | TD | TP |
---|---|---|---|---|
Matériaux avancés et nanomatériaux
Objectifs: Montrer l'intérêt des nanomatériaux et des matériaux avancés et la diversité des applications dans des domaines tels que l'électronique, la construction le médical, le transport … Compétences-Connaissances: acquérir les notions de base sur la nanoscience et les nanotechnologies, connaître les méthodes d'élaboration et de caractérisation des nanomatériaux, découvrir les nanomatériaux magnétiques, les nanotubes de carbone et les nanomatériaux poreux. Connaître le fonctionnement et les applications de matériaux avancés tels que les matériaux carbonés, les complexes métal-organique, les céramiques et verres techniques. | 4 | 30h | 3h | |
Elaboration des matériaux
Objectifs: Concevoir le matériau comme un nouvel objet technologique ou comme source de connaissances fondamentales: de la structure aux propriétés physico-chimiques et inversement. Connaître les diffréentes méthodes d'élaboration des matériaux utilisés actuellement dans l'industrie et la recherche, savoir décider quelle méthode choisir en fonction d'un cahier des charges. Compétences-Connaissances: Connaître les méthodes d'élaboration de couches minces, des poudres et leur mise en forme, du frittage classique sous P et/ou T, des verres et vitrocéramiques, des géomatériaux. Savoir élaborer une stratégie d'élaboration. | 4 | 15h | 6h | 9h |
Caractérisation des matériaux
Objectifs: Donner des outils méthodologiques permettant de mettre en œuvre les techniques adéquates pour une caractérisation spécifique des matériaux. Illustrer cette stratégie de caractérisation avec des cas spécifiques de choix de techniques pour répondre à des problématiques données. Détailler la complémentarité des méthodes. Compétences-Connaissances: Connaître les techniques principales de caractérisation, pour la morphologie, la texture, la structure, la composition chimique. Comprendre les méthodes de caractérisation physico-chimiques des matériaux. | 4 | 15h | 6h | 9h |
Simulation et modélisation
Objectifs: Appréhender la notion de simulation et de modélisation de spectres, de données ou de structures cristallines. Apprendre à déterminer les propriéts d'un système à l'échelle microscopique. Savoir choisir la bonne approche en fonction des questions posées et des informations recherchées. Compétences-Connaissances: Connaître les enjeux et les objectifs de la modélisation au travers d'exemples concrets de recherche. Comprendre les notions d'interactions fondamentales et de potentiels effectifs. Savoir explorer différents niveaux de modélisation. Maîtriser les bases du calcul de structure électronique et des méthodes ab initio. | 3 | 9h | 18h | |
Connaissance de l'Entreprise 2
Objectifs: Découvrir le monde de l'entreprise au travers de conférences thématiques. Acquérir des notions de base en gestion de projet, et en communication orale et écrite dans le monde de l'entreprise. Compétences-Connaissances: Découvrir des aspects du monde de l'entreprise comme la prévention hygiène et sécurité ou les normes. Découvrir la gestion de projets en entreprise au travers de cas concrets sur ordinateur. Découvrir la communication en entreprise, au sein d'une équipe. Approfondir la notion d'écoute et d'assertivité, le discours et l'écrit. | 3 | 24h | ||
Matériaux pour l'énergie
Objectifs: Découvrir les différents aspects technologiques et scientifiques du stockage d'hydrogène et des générateurs électrochimiques. Compétences-Connaissances: Connaître les différentes technologies liées aux piles à combustible, à la filière hydrogène et aux accumulateurs. Connaître le principe de fonctionnement des matériaux utilisés dans de telles technologies et les phénomènes physico-chimiques associés. Connaître les méthodes d'analyse mises en oeuvre pour leur étude. Savoir analyser des résultats de caractérisations électrochimiques et physico-chimiques. | 3 | 15h | 9h | |
Matériaux à propriétés magnétiques
Objectifs: Décrire le magnétisme macroscopique. Explorer les différentes propriétés magnétiques et les transitions de phases. Comprendre la théorie microscopique du magnétisme. Explorer les systèmes ferromagnétiques et leurs applications. Compétences-Connaissances: Connaître les propriétés magnétiques intrinsèques et extrinsèques. Comprendre les concepts et applications du superparamagnétisme, des verres de spins, de la réfrigération magnétique, des enregistrements magnétiques à haute densité, des aimants permanents. Connaîtres les nanoparticules magnétiques pour applications médicales, les couches minces et les nanostructures magnétiques. | 3 | 15h | 9h | |
Géomatériaux
Objectifs: Comprendre la relation microstructure-propriétés et les mécanismes d'alétration des géomatériaux. Compétences-Connaissances: Connaître les géomatériaux d'intérêt géologique, historique et environnemental. Comprendre les transformations des géomatériaux sous l'effet de leur environnement (chimie, biologie, P, T). Connaître les processus géologiques de transformation des météorites et minéraux naturels. Comprendre les mécanismes d'alétration, de conservation et de restauration des matériaux du patrimoine historique. Connaître les géomatériaux utilisés pour l'inertage des déchets, et les processus d'altération de ces matrices de stockage. | 3 | 15h | 9h | |
Mousses et matériaux aérés
Objectifs: Présenter les structures, le vieillissement et les propriétés mécaniques des mousses. Illustrer les concepts fondamentaux par de nombreux exemples en science des matériaux et des applications pratiques ou industrielles (matériaux de construction, médical, agroalimentaire ...) Compétences-Connaissances: Comprendre les propriétés et performances des mousses et leurs applications. Connaître les mousses liquides comme précurseurs de mousses solides (structure, drainage, mûrissement, élaboration, élasticité). Connaître les propriétés mécaniques et thermiques des mousses solides 3D ou en nid d'abeille 2D. | 3 | 15h | 9h | |
Matériaux semiconducteurs
Objectifs: Connaître les propriétés des semi-conducteurs. Donner des connaissances sur les matériaux, les technologies et le principe de fonctionnement des systèmes photovoltaïques et thermoélectriques Compétences-Connaissances: Comprendre le fonctionnement des matériaux semi-conducteurs. Connaître le fonctionnement des piles photovoltaïques, et le principe de photoabsorption. Connaître et comprendre les effets thermoélectriques (refroidissement ou production d'électricité). Connaître les matériaux et les technologies utilisés pour la conversion thermoélectrique. | 3 | 15h | 9h |
Semestre 4
Enseignements | ECTS | CM | TD | TP |
---|---|---|---|---|
Stage
Stage de 4 à 6 mois | 30 |